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Thanks and acknowledgements

It is an honor to be here, to speak to you.

Thanks to the organizing commi�ee, in particular to Robson Armindo, for the invitation.

This talk is largely based on Tomás Chor’s MSc thesis and joint publications with Tomás
Chor and Ailín Ruiz de Zárate.
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2. Introduction

The Boussinesq nonlinear PDE for groundwater (for a horizontal acquifer) was derived
by Boussinesq in 1903. Its assumptions are

• conservation of mass

• Darcy’s law

• horizontal mean velocity (Dupuit-Forchheimer)

The 1-D version of the equation, for a horizontal aquifer, is

∂h

∂t
=
k

n

∂

∂x

[
h
∂h

∂x

]
.

• k is the saturated hydraulic conductivity,
• n is the drainable porosity.
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Meet Boussinesq
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Why is it important?

The equation, although it involves some approximations, is a very good model for
the drought flow of an aquifer into free-surface streams, such as rivers and drainage
trenches.

b

b

L

H0

H

BB

x

h(x, t)

Lemma
UFPR



2. Introduction 6/34

Why is it important?

• As such, it can predict the outflow from an aquifer accurately [Ibrahim and Brutsaert,
1965], as well as predict the free surface when B/H > 4 [Verma and Brutsaert, 1971,
p. 1227]

• Various solutions of the Boussinesq equation can be used together to solve an “inverse
problem”: from the outflow hydrograph, obtain the physical and geometrical param-
eters of the aquifer (usually, two among: k , n, B, H ). This is called “Brutsaert-Nieber”
recession analysis, from its seminal paper [Brutsaert and Nieber, 1977].

• Recent uses of this equation include the linking of geological and geomorphological
features to hydrological behavior [Mutzner et al., 2013, Vannier et al., 2014] and the
definition of good engineering practices for the robust calibration of parsimonious
models [Melsen et al., 2014].
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Focus

• As usual, there is a very large field of themes to investigate regarding the Boussinesq
non-linear PDE.

• In this talk, I will concentrate on the particular case B → ∞. The PDE can then be
simplified to an ODE.

• It is this ODE, and a sequence of proposed solutions, that we will be talking about
here.
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Focus

• As usual, there is a very large field of themes to investigate regarding the Boussinesq
non-linear PDE.

• In this talk, I will concentrate on the particular case B → ∞. The PDE can then be
simplified to an ODE.

• It is this ODE, and a sequence of proposed solutions, that we will be talking about
here.

Unfortunately, whenever we have focus on a problem, di�iculties mount.

We end up spending a lot of energy on the focused problem, which is but a small part of
the problem we started with.

Please, bear with us as we probe the many facets and di�iculties of some solutions of the
Boussinesq ODE!
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3. The Boussinesq ODE, and its cousin the Blasius ODE

We are interested in the case B → ∞.
Given a Boltzmann transformation,

ϕ =
h(x ,t )

H
, ξ =

x√
4Dt
, D = H

k

n
,

the Boussinesq PDE is transformed into

d
dξ

(
ϕ
dϕ
dξ

)
+ 2ξ dϕdξ = 0.
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3. The Boussinesq ODE, and its cousin the Blasius ODE

We are interested in the case B → ∞.
Given a Boltzmann transformation,

ϕ =
h(x ,t )

H
, ξ =

x√
4Dt
, D = H

k

n
,

the Boussinesq PDE is transformed into

d
dξ

(
ϕ
dϕ
dξ

)
+ 2ξ dϕdξ = 0.

Surprisingly, Punnis [1956] showed that,
if we further put

ϕ =
df
dη , ξ =

1
2 f ,

we obtain

d3 f
dη3
+
1
2 f

d2 f
dη2
= 0,

which is Blasius’ equation for a laminar
boundary-layer!
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3. The Boussinesq ODE, and its cousin the Blasius ODE

We are interested in the case B → ∞.
Given a Boltzmann transformation,

ϕ =
h(x ,t )

H
, ξ =

x√
4Dt
, D = H

k

n
,

the Boussinesq PDE is transformed into

d
dξ

(
ϕ
dϕ
dξ

)
+ 2ξ dϕdξ = 0.

Surprisingly, Punnis [1956] showed that,
if we further put

ϕ =
df
dη , ξ =

1
2 f ,

we obtain

d3 f
dη3
+
1
2 f

d2 f
dη2
= 0,

which is Blasius’ equation for a laminar
boundary-layer!

This means that in principle we can apply everything we know about Blasius’ solution
of f to Boussinesq’s solution of ϕ. We will call this the Punnis transformation.
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The legacy of Blasius

There is a lot to be learned from Blasius [1908]’s Boundary-Layer Theory. Remember,
Blasius’s advisor was Ludwig Prandtl, the creator of the Boundary-Layer concept.

Ludwig Prandtl (le�) and Paul Richard Heinrich Blasius (right).
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In 1950, NACA (nowadays NASA) was interested in Blasius [1908].
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In 1950, NACA (nowadays NASA) was interested in Blasius [1908].

Blasius’ did not stop at deriving his equa-
tion. The main tools he used were:

• The product of two series is again a se-
ries

• A solution for f in series can be de-
veloped, but the radius of convergence
around η = 0 is finite.

• Beyond the radius of convergence, Bla-
sius implemented an asymptotic solu-
tion.
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Blasius’ essential mathematical tools

Series products



∞∑
n=0

Anx
n





∞∑
m=0

Bmx
m


=

∞∑
n=0



n∑
m=0

AmBn−m

xn.

This allows us to seek series solutions of non-linear di�erential equations. Finding the
radius of convergence of these solutions, however, can be quite di�icult.

Asymptotic behavior
Moreover, we may try to modify the ODE by “knowing” some asymptotic behavior. In
our case, if we start out from an aquifer full of water up to H at t = 0, and if B = ∞, we
expect

lim
ξ→∞

ϕ (ξ ) = 1.

Substituting back this condition or a zero derivative in the Boussinesq ODE may result
in a simpler ODE, valid for large ξ only.
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4. The search for solutions

In order for the Boltzmann transform to work, we
need to collapse two Boundary Conditions into
one:

ϕ =
h(x ,t )

H
, ξ =

x√
4Dt
, D = H

k

n
,

h(x ,0) = H

h(∞,t ) = H
⇒ ϕ (∞) = 1,

h(0,t ) = H0 ⇒ ϕ (0) = ϕ0.

This is a boundary-value problem. Physically,
however, we are interested in the initial condition

ψ0 = ϕ
dϕ
dξ

�����ξ=0
,

which gives the flow rate out of the aquifer and
into the stream.
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4. The search for solutions

In order for the Boltzmann transform to work, we
need to collapse two Boundary Conditions into
one:

ϕ =
h(x ,t )

H
, ξ =

x√
4Dt
, D = H

k

n
,

h(x ,0) = H

h(∞,t ) = H
⇒ ϕ (∞) = 1,

h(0,t ) = H0 ⇒ ϕ (0) = ϕ0.

This is a boundary-value problem. Physically,
however, we are interested in the initial condition

ψ0 = ϕ
dϕ
dξ

�����ξ=0
,

which gives the flow rate out of the aquifer and
into the stream.

• The shooting method consists of guessing
ψ0, solving numerically the Boussinesq ODE,
checking ϕ (∞) (where “∞” is just a large
enough ξ ), adjusting ψ0, and going over (until
ϕ (∞) ≈ 1).

• Töpfer’s (1912) method,

ϕ = λ−2ϕ∗, ψ = λ−3ψ ∗, ξ = λ−1ξ ∗,

avoids the iterations, but only when ϕ0 = 0.

• No ma�er what the subsequent analytical ap-
proach is, a numerical solution (e.g. Runge-
Ku�a) is needed to obtainψ0.
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5. Solutions for ϕ0 = 0

Given the Blasius equation, with boundary conditions f (0) = 0, f ′(0) = 0, f ′(∞) = 1,
Blasius derived

f (η) =
∞∑
n=0

(−1)nanη3n+2, an =
1

2(3n + 2) (3n + 1) (3n)

n−1∑
k=0

(3k + 2) (3k + 1)akan−1−k ,

where a0 = κ/2 and f ′′(0) = κ = 0.33205733621519630 [Boyd, 2008].
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5. Solutions for ϕ0 = 0

Given the Blasius equation, with boundary conditions f (0) = 0, f ′(0) = 0, f ′(∞) = 1,
Blasius derived

f (η) =
∞∑
n=0

(−1)nanη3n+2, an =
1

2(3n + 2) (3n + 1) (3n)

n−1∑
k=0

(3k + 2) (3k + 1)akan−1−k ,

where a0 = κ/2 and f ′′(0) = κ = 0.33205733621519630 [Boyd, 2008].

Using the Punnis transformation, both Heaslet and Alksne [1961] and Polubarinova-
Kochina [1962] inverted the Blasius series and obtained a few terms of a series solution
for the Boussinesq EDO; they also obtained from Blasius an asymptotic solution:

ϕ (ξ ) = 1.152ξ 1/2 − 4
15ξ

2 + 0.0462ξ 7/2 − 0.00065ξ 5 + . . . ,
ϕ (ξ ) ≈ 1 − 0.231√π erfc(ξ ).
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Heaslet and Alksne [1961]’s results were already very good
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Improvements: Hogarth and Parlange [1999]

The next step was provided by Hogarth and Parlange [1999]: they replaced the Heaslet&
Alksne–Polubarinova-Kochina series solution with a Padé approximation obtained from
that series, and also improved the asymptotic solution:

ϕ (ξ ) = 1.15249ξ 1/2 − 4/15ξ 2

1 + 0.17355ξ 3/2 + 0.02768ξ 3
, ξ ≤ 1.3,

ϕ (ξ ) = 1 − 0.41387 erfc
(

ξ

1 + 0.058375ξ 3 exp(−ξ 2)
)
, ξ > 1.3.
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Improvements: Hogarth and Parlange [1999]

The next step was provided by Hogarth and Parlange [1999]: they replaced the Heaslet&
Alksne–Polubarinova-Kochina series solution with a Padé approximation obtained from
that series, and also improved the asymptotic solution:

ϕ (ξ ) = 1.15249ξ 1/2 − 4/15ξ 2

1 + 0.17355ξ 3/2 + 0.02768ξ 3
, ξ ≤ 1.3,

ϕ (ξ ) = 1 − 0.41387 erfc
(

ξ

1 + 0.058375ξ 3 exp(−ξ 2)
)
, ξ > 1.3.

So far, everything was being obtained on the basis of Blasius’ results alone!
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Hogarth and Parlange [1999]’s results were more accurate

(but visually not too di�erent)
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Direct series solution of the Boussinesq ODE

We approached the problem again in Tomás Chor’s MSc thesis, but we searched directly
for a series solution of the Boussinesq ODE:

ϕ (ξ ) =
∞∑
n=0

anξ
(3n+1)/2.

We first used symbolic algebra to compute the first n values of the series:
1 M : 50 ;
2 a[0]: 1.15248832742929 ;
3 fi : sum(a[n]*x^((3*n+1)/2) ,n,0,M) ;
4 eq : expand( diff(fi*diff(fi ,x),x) + 2*x*diff(fi ,x) ) ;
5 cond : [] ;
6 file_output_append : true ;
7 with_stdout (" se_xi.txt",print(string(float(a [0]))));
8 for n : 0 thru M-1 do (
9 eqqu : ev(coeff(eq ,x ,(3*n+1)/2) , cond) ,
10 this : solve(eqqu ,a[n+1]) ,
11 cond : append(cond ,this),
12 this : first(this),
13 a[n+1] : rhs(this),
14 with_stdout (" se_xi.txt",print(float(a[n+1])))
15 );
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Results with symbolic algebra

We can go as far as we want with the an’s:

a0 +1,15248832742929 × 10+0
a1 −2,6666666666667 × 10−1
a2 +4,6276679827463 × 10+0
a3 −6,4894881692528425 × 10−4
a4 −9,4517828664332276 × 10−4
a5 −2,5400784492116708 × 10−5
a6 +3,5810599703874529 × 10−5
a7 +3,8844564686017651 × 10−6
a8 −1,4163383082670557 × 10−6
a9 −3,2740710683167304 × 10−7
a10 +4,5534502970990704 × 10−8 From Chor et al. [2013b]
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With hard algebra

Next, results were derived analytically [Chor et al., 2013a]:

an+1 = − 1
a0(3n + 5)

*.
,

4 (3n + 1) an
3n + 3 +

3n + 5
2

n∑
k=1

akan−k+1
+/
-
,

a0
√
2ψ0

a1 − 4
15

a2 − 1
6a0 (2a1 + 3a

2
1)

a3 − (99a1+28)a2
99a0

a4 − (42a1+10)a3+21a22
42a0... ...

Some limitations are inherited from the
Blasius’ series solution:

• No equation for the general term (a rec-
curence relation instead): no easy way
to calculate the radius of convergence.

• Dependence on the first term. In our
case,

ψ0 = ϕ
dϕ
dξ

�����ξ=0
is a key parameter.
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Still, the radius of convergence was not known

Series solution calculated with 8700
terms:

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.5 1.0 1.5 2.0 2.5

ϕ
(ξ
)

ξ

To obtain an accurate estimate of the ra-
dius of convergence, we changed variables
(ζ = ξ 1/2), obtained a new equation,

d
dζ

[
Φ

ζ

dΦ
dζ

]
+ 4ζ 2dΦdζ = 0,

and a standard power series

Φ =
∞∑
n=0

anζ
3n+1.

Φ(ζ ) is an analytic function within a circle around the origin in the complex ζ -plane.
The circle’s radius is the radius of convergence. Within that radius, from Cauchy’s The-
orem, ∮

C
Φ(ζ ) dζ = 0.
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The radius of convergence

R ≈ 2.3757445

Re ζ

Im ζ

θ

θ

A B B′

b

All integrals are line integrals using the Runge-Ku�a-Cash-Karp method in the complex
plane. The method provides error estimates which are used to identify non-zero line
integrals. Six singularities of the complex Boussinesq function Φ(ζ ) are clearly seen,
along with branch cuts emanating from them.
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Chor et al. [2013a] improvements

Having the full series now, we extended the Padé approximations

PN (ξ ) = ξ
1/2

∑N
n=0Anξ

3n
2∑N

n=0 Bnξ
3n
2
.

Best results were obtained for N = 200, and a more modest N = 20 was tabulated. With
N = 20, the Padé approximation extends the radius of convergence to ≈ 3.3.

The same asymptotic solution of Hogarth and Parlange [1999],

ϕ (ξ ) ∼ 1 −A√π erfc *.
,

ξ

1 + A
2ξ 3 exp(−ξ 2)

+/
-

was also obtained, but with A = 0.2337276186438419.
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Best results (But probably overkill)
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6. Solutions for ϕ0 , 0

We now look at the boundary condition 0 < ϕ0 < 1. As before, ϕ (∞) = 1.

Di�erently from the case ϕ0 = 0, the derivative dϕ/dξ is not singular at ξ = 0, and this
allows one to seek a solution in terms of a regular Taylor series [Dias et al., 2014]:

ϕ (ξ ) =
∞∑
n=0

anξ
n,

a0 = ϕ0, a1 =
ψ0
a0
,

an+1 = − 1
a0(n + 1)



2(n − 1)
n

an−1 +
n∑

k=1
(n − k + 1)akan−k+1


.
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A practical approach for the initial condition

As before, the value of ψ0 is of engineering interest, but cannot be obtained (so far) by
purely analytical means. Töpfer’s method can no longer be applied to obtainψ0 (numer-
ically) in one pass, but it can help to generate a large number of numerical solutions [see
Dias et al., 2014]. Then, we fi�ed an empirical curve:
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ψ
0
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Eq. (14)

ψ0(ϕ0) ≈ (Ψd
0 + aϕ

b
0)

1
d (1 − ϕc0) (1 + f ϕ

д
0)
e ,

Ψ0 ≈ 0.66411467.

with a = 0.733841, b = 0.999223, c =
0.98359, d = 2.94568, e = 0.186587, f =
0.966673, and д = 0.93347.
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A new asymptotic solution

When ξ → ∞, ϕ → 1. Substituting this
into the Boussinesq ODE:

ϕϕ′′ + ϕ′ϕ′ + 2ξϕ′ = 0 ⇒
ϕ′′a + ϕ′aϕ′a + 2ξϕ′a = 0

(where a is for “asymptotic”). The la�er is
a Bernoulli equation in ϕ′a! Solving,

ϕa (ξ ,C ) = ln
(
erf (ξ ) +C
1 +C

)
+ 1.

For each ϕ0 there is an optimum C :

ϕ0 C

0.1 .863074
0.2 1.01683
0.3 1.20578
0.4 1.46309
0.5 1.82544
0.6 2.39555
0.7 3.22508
0.8 4.87223
0.9 9.84770
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Results from Dias et al. [2014] for ϕ0 = 0.5
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7. An application to hydrology

Consider again a simplified watershed:

b

b

L

H0

H

BB

x

h(x, t)

In the dimensionless variables

x =
x

B
, τ =

kH

nB2t ,

the Boussinesq PDE is

∂ϕ

∂τ
=
∂

∂x

[
ϕ
∂ϕ

∂x

]
,

ϕ (x,0) = 1, ϕ (0,t ) = ϕ0,
∂ϕ

∂x
(1,t ) = 0.

At an early time the aquifer “looks” infinite along
x, and the dimensionless outflow is

χ (τ ) =

[
ϕ
∂ϕ

∂x

]
(0,τ ) =

[
ϕ
dϕ
dξ

]

0

1
2τ
−1/2 =

ψ0
2 τ
−1/2.

For late times, a linearized equation can be derived
[Boussinesq, 1904],

∂ϕ

∂τ
= p
∂2ϕ

∂x2

whose solution reduces to

χ (τ ) = p exp
(−π2p

4 τ

)
.

Hence,
dχ
dτ = α χ

β
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Brutsaert-Nieber recession analysis

α1 and α2 are analytically related to k and n. β1 = 3 and β2 = 1 are predicted from the
analytical solutions.
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Retrieving n and k

From Chor and Dias [2014]:

n =
(p
2

)1/2 π

Hψ0A
(α2α1)

−1/2 ,

k =
A√

2pH 2L2πψ0

(
α2
α1

)1/2
.

All of previous research (including analyses with real watersheds) has used the value of
ψ0 associated with ϕ0 = 0.

However, from Dias et al. [2014], we now have the functionψ0(ϕ0).
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E�ect of changingψ0.
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8. Conclusions

You may know more about this talk in:

Tomás Luís Guimarães Chor, Nelson Luís Dias, and Ailin Ruiz de Zarate. Solução em série
da equação de boussinesq para fluxo subterrâneo utilizando computação simbólica. In
Anais, XX Simpósio Brasileiro de Recursos hídricos, Bento Gonçalves, RS, 2013b

T. Chor, N. L. Dias, and A. R. de Zárate. An exact series and improved numerical and ap-
proximate solutions for the boussinesq equation. Water Resour. Res., 49:7380–7387, 2013a.
doi: 10.1002/wrcr.20543

N. L. Dias, T. Chor, and A. R. de Zárate. A semi-analytical solution for the boussinesq
equation with non-homogeneous constant boundary conditions. Water Resour. Res., 50
(8):6549–6556, 2014. doi: 10.1002/2014WR015437

T. L. Chor and N. L. Dias. A simple generalization of the brutsaert and nieber analysis.
Hydrology and Earth System Sciences Discussions (Online), 11:12519–12530, 2014
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Closing remarks

• To this day, the analytical (series and asymptotic) solutions of Blasius are a powerful
tool, not only for Boundary-Layer Theory, but for a completely unrelated problem,
the Boussinesq non-linear equation.
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Closing remarks
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• To this day, the analytical (series and asymptotic) solutions of Blasius are a powerful
tool, not only for Boundary-Layer Theory, but for a completely unrelated problem,
the Boussinesq non-linear equation.

• Unfortunately, the initial conditionψ0 still needs to be calculated numerically (but we
are working on it!).

• A host of analytical and semi-analytical techniques (complex plane integration and
Cauchy’s Theorem; Padé approximations; asymptotic analysis of di�erential equa-
tions) are needed to make analytical solutions useful for groundwater problems.

• We must recognize that the first strides (Blasius, Polubarinova-Kochina, Heaslet and
Alksne) were the largest, but the recent improvements promise a much wider scope
of applications and unprecedented (maybe not needed in Engineering) accuracy.

• I leave you with the most accurate (31 digits) estimate of Blasius’s constant for the

shear stress in a laminar boundary-layer, from Chor et al. [2013a]:

κ = 0.33205733621519629893718005933892
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