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2. Introduction

The Boussinesq nonlinear PDE for groundwater (for a horizontal acquifer) was derived
by Boussinesq in 1903. Its assumptions are

e conservation of mass
e Darcy’s law

e horizontal mean velocity (Dupuit-Forchheimer)

The 1-D version of the equation, for a horizontal aquifer, is

oh_k o [,k
ot nox| Ox|’

e k is the saturated hydraulic conductivity,
e nis the drainable porosity.
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Meet Boussinesq

SEANCE DU 22 JUIN 1903. 1511

» L’existéncé, 4 une époque reculée, d'une atmosphére appréciable,
ayant occasionné la diffusion des cendres sous forme de trainées;

» L’absence d’eau courante & la surface, confirmée par I’état de conser-
vation de des dépots ;

» Iordre de succession de divers grands cataclysmes et celui de la con-
solidation des diverses parties de la surface;

» L'interprétation des recrudescences des trainées, comme le signe de
petites différences d’altitude. »

HYDRODYNAMIQUE. — Sur le débit, en temps de sécheresse, d’une source
alimentée par une nappe d’eaux d’infiltration. Note de M. J. Bous-
SINESQ.

« 1. Lorsqu’un sol perméable, reposant sur un sous-sol imperméable, a
ses couches inférieures imprégnées d’eau, mals ses couches supérieures
soumises & la pression atmosphérique constante de I'air superposé a I'eau,
et que; d'ailleurs, celle-ci, occupant les interstices des grains sablonneux
ou tetreux des couches inférieures, c’est-i-dire une certaine fraction . de
leur volume apparent donnée pour chaque endroit (z, y, s), se trouve ani-
mée, dans toute région un peu étendue, de lents mouvements suivant une
certaine direction générale, susceptible de changer peu & peu avec le temps ¢,
les interstices contigus assez bien alignés suivant cette direction générale
pour permettre un écoulement appréciable, deviennent des tubes de trans-
piration. Quant 4 I’eau emmagasinée entre deux tubes de transpiration voi-
sins, dans les interstices dont lés ouvertures sont disposées suivant les
diréctions perpendiculaires, et qui, 4 peu prés immobile, compléte en
quelque sorte la paroi des tubes; elle a, dans le mouvement, le réle capital
de transmettre la pression d’uri tube  I'autre et, par suite, de rendre soli-
daire dans tous I'écoulement.

» Or on sait que, le long des chemins perpendiculaires i cet écoulement,
la pression est régie par la loi hydrostatique, non seulement la oit le
liquide est ainsi en repos entre deux tubes, mais, méme, & la traversée des
filets fluides de chaque tubé: Abstraction faite d’anomalles locales seé neu-
tralisant en moyenne, cette pression p (que ndus supposerons évaldée en
hauteur de liquide), varie donc kydrostatiquement le long de tels chemins,
dans toute I'étendue du liquide filtré par le sol. C'est dire que la hauteur )
de charge, somme; en chaque point (&, y. 5), de p et de I'altitude s du point
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2. Introduction

Why is it important?

The equation, although it involves some approximations, is a very good model for
the drought flow of an aquifer into free-surface streams, such as rivers and drainage

trenches.

h(zx,t)

Hy z
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Why is it important?

e Assuch, it can predict the outflow from an aquifer accurately [Ibrahim and Brutsaert,
1965], as well as predict the free surface when B/H > 4 [Verma and Brutsaert, 1971,
p. 1227]

e Various solutions of the Boussinesq equation can be used together to solve an “inverse
problem”: from the outflow hydrograph, obtain the physical and geometrical param-
eters of the aquifer (usually, two among: k, n, B, H). This is called “Brutsaert-Nieber”
recession analysis, from its seminal paper [Brutsaert and Nieber, 1977].

e Recent uses of this equation include the linking of geological and geomorphological
features to hydrological behavior [Mutzner et al., 2013, Vannier et al., 2014] and the
definition of good engineering practices for the robust calibration of parsimonious
models [Melsen et al., 2014].
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Focus

e As usual, there is a very large field of themes to investigate regarding the Boussinesq
non-linear PDE.

e In this talk, | will concentrate on the particular case B — oo. The PDE can then be
simplified to an ODE.

e It is this ODE, and a sequence of proposed solutions, that we will be talking about
here.
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Focus

e As usual, there is a very large field of themes to investigate regarding the Boussinesq
non-linear PDE.

e In this talk, | will concentrate on the particular case B — oo. The PDE can then be
simplified to an ODE.

e It is this ODE, and a sequence of proposed solutions, that we will be talking about
here.

Unfortunately, whenever we have focus on a problem, difficulties mount.

We end up spending a lot of energy on the focused problem, which is but a small part of
the problem we started with.

Please, bear with us as we probe the many facets and difficulties of some solutions of the
Boussinesq ODE!
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3. The Boussinesq ODE, and its cousin the Blasius ODE
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3. The Boussinesq ODE, and its cousin the Blasius ODE

We are interested in the case B — oo.
Given a Boltzmann transformation,

h(x,t) b k
= R = ) D — H_,
¢ H : V4Dt n

the Boussinesq PDE is transformed into

5\ g
§(¢§) X =0
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3. The Boussinesq ODE, and its cousin the Blasius ODE

We are interested in the case B — oo.

Given a Boltzmann transformation,

gb:h(x,t), - X | D:HE,
H V4Dt n

the Boussinesq PDE is transformed into

5\ g
§(¢§) X =0

Surprisingly, Punnis [1956] showed that,
if we further put

df 1
¢ = an’ £ = Ef’
we obtain
d3f 1 dzf
dn? 2 dn? ’

which is Blasius’ equation for a laminar
boundary-layer!
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3. The Boussinesq ODE, and its cousin the Blasius ODE

We are interested in the case B — oo.

Given a Boltzmann transformation,

h(x,t) - b
H '~ bt

k
¢ = D=H-,
n

the Boussinesq PDE is transformed into

5\ g
§(¢§) X =0

Surprisingly, Punnis [1956] showed that,
if we further put

we obtain
d3f dzf
dn? 2 dn? ’

which is Blasius’ equation for a laminar
boundary-layer!

This means that in principle we can apply everything we know about Blasius’ solution
of f to Boussinesq’s solution of ¢. We will call this the Punnis transformation.
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The legacy of Blasius

There is a lot to be learned from Blasius [1908]’s Boundary-Layer Theory. Remember,
Blasius’s advisor was Ludwig Prandtl, the creator of the Boundary-Layer concept.

Ludwig Prandtl (left) and Paul Richard Heinrich Blasius (right).
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In 1950, NACA (nowadays NASA) was interested in Blasius [1908].
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In 1950, NACA (nowadays NASA) was interested in Blasius [1908].

¥,
NACA TM 125€

ET6L
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NATIONAL ADVISORY COMMITTEE |
FOR AERONAUTICS

TECHNICAL MEMORANDUM 1256

THE BOUNDARY LAYERS IN FLUIDS
WITH LITTLE FRICTION
By H. Blasius

Translation of « Grenzschichten in Flissigkeiten mit kleiner Reibung”
Zeitschrift flir Mathematik und Physik, Band 56, Heft 1, 1908

Washington
February 19580
AEMDC
coirm T RTANY
frL 2511

WN ‘|dv) AHYHEIT HO3L
PRSP P

>
/

ﬁQLemma
UFPR




3. The Boussinesq ODE, and its cousin the Blasius ODE 10/34

In 1950, NACA (nowadays NASA) was interested in Blasius [1908].
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Blasius’ did not stop at deriving his equa-
tion. The main tools he used were:

e The product of two series is again a se-
ries

e A solution for f in series can be de-
veloped, but the radius of convergence
around n = 0 is finite.

e Beyond the radius of convergence, Bla-
sius implemented an asymptotic solu-
tion.
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Blasius’ essential mathematical tools

Series products

n

x".

0 0
2, An" =2,
n=0 n=0

This allows us to seek series solutions of non-linear differential equations. Finding the
radius of convergence of these solutions, however, can be quite difficult.

O
> B
m=0

AmBn—m
0

m=

Asymptotic behavior

Moreover, we may try to modify the ODE by “knowing” some asymptotic behavior. In
our case, if we start out from an aquifer full of water up to H at t = 0, and if B = oo, we
expect

lim = 1.
lim ¢(2) = 1

Substituting back this condition or a zero derivative in the Boussinesq ODE may result
in a simpler ODE, valid for large & only.
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4. The search for solutions
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4. The search for solutions

In order for the Boltzmann transform to work, we
need to collapse two Boundary Conditions into

one:
_ h(x,t) X B E
gb - H ’ f - @9 D = Hna
oo —p = =1
RO =H, = $(0) =y

This is a boundary-value problem. Physically,
however, we are interested in the initial condition

_ 4%

=4,

which gives the flow rate out of the aquifer and
into the stream.
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4. The search for solutions

In order for the Boltzmann transform to work, we
need to collapse two Boundary Conditions into
one:

h(x,t) X

¢ =

H V4Dt
h(x,0) = H B
h(oco,t) = H = ple) = 1,
RO.D=H = $(0) =g

This is a boundary-value problem. Physically,
however, we are interested in the initial condition

_ 4%

=4,

which gives the flow rate out of the aquifer and
into the stream.

e The shooting method consists of guessing

o, solving numerically the Boussinesq ODE,
checking ¢(c0) (where “c0” is just a large
enough &), adjusting 1, and going over (until
B(c) ~ 1)

Topfer’s (1912) method,

£ =)l

$=21"¢",  Y=1"y,

avoids the iterations, but only when ¢, = 0.

No matter what the subsequent analytical ap-
proach is, a numerical solution (e.g. Runge-
Kutta) is needed to obtain .
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5. Solutions for ¢y = 0

Given the Blasius equation, with boundary conditions f(0) = 0, f’(0) = 0, f’(c0) =1,
Blasius derived

1
T 2G3n+ 2)(3n + 1)(3n)

00 n—1
f) =) (-D"a™?,  ay D 3k +2)(3k + 1)axan1
n=0 =0

where ay = k/2 and f”(0) = k = 0.33205733621519630 [Boyd, 2008].
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5. Solutions for ¢y = 0

Given the Blasius equation, with boundary conditions f(0) = 0, f’(0) = 0, f’(c0) =1,
Blasius derived

1 n—1
" 2G3n+2)3n+1)(3n) ;Bk + 2B+ Dakan-i-r

f) =D (=D"am™?  ay
n=0

where ay = k/2 and f”(0) = k = 0.33205733621519630 [Boyd, 2008].

Using the Punnis transformation, both Heaslet and Alksne [1961] and Polubarinova-
Kochina [1962] inverted the Blasius series and obtained a few terms of a series solution
for the Boussinesq EDO; they also obtained from Blasius an asymptotic solution:

4
$(&) = 1.152¢1/2 — 1—552 +0.046287/2 — 0.000658° + . . .,

P(£) = 1 —0.231 Vr erfc(£).
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Heaslet and Alksne [1961]’s results were already very good

\S‘ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, —
"""""""""""""""""""""""""""""""""""""""""""""""""""" numerical —— |
Heaslet & Alksne, series ======---
Heaslet & Alksne, asymptotic ««eeeeeee
0.0 L I | 1
0 1 2 3 4 5

SaE
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5. Solutions for ¢y = 0 15/34

Improvements: Hogarth and Parlange [1999]

The next step was provided by Hogarth and Parlange [1999]: they replaced the Heaslet&
Alksne—Polubarinova-Kochina series solution with a Padé approximation obtained from
that series, and also improved the asymptotic solution:

(£) = 1.15249¢1/2 4/15¢° C s
o 1 +0.1735563/2 4 0.02768¢°” =0
§
= 1-0.41387 erf | s
o o (1 +0.058375¢3 exp(—¢£2) &>
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Improvements: Hogarth and Parlange [1999]

The next step was provided by Hogarth and Parlange [1999]: they replaced the Heaslet&
Alksne—Polubarinova-Kochina series solution with a Padé approximation obtained from
that series, and also improved the asymptotic solution:

4/15&2
— 1.15249¢£1/2 _ ’ =13,
P(£) S 0.17355&3/2 +0.02768&3 :
3
= 1 —0.41387 erf ’ L.3.
¢(&) ceHe (1 +0.05837583 exp(—£2) -

So far, everything was being obtained on the basis of Blasius’ results alone!
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Hogarth and Parlange [1999]’s results were more accurate

(but visually not too different)

1.2 , , , -
: : ","
—“’-4"'"“
1.0
0.8 B S — S — S — -
IS L T e e .
0.4 R :
0.2 R S S S -
numerical
Hogarth& Parlange, Padé ---=-----
Hogarth& Parlange, asymptotic ««eeees:
0.0 | ] ] ]
0 1 2 3 4 5
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Direct series solution of the Boussinesq ODE

We approached the problem again in Tomas Chor’s MSc thesis, but we searched directly
for a series solution of the Boussinesq ODE:

(©¢)

B(E) = ) ant OV

n=0

We first used symbolic algebra to compute the first n values of the series:

M : 50 ;
al0]: 1.15248832742929 ;
fi : sum(aln]*x~((3*n+1)/2),n,0,M) ;
eq : expand( diff (fixdiff (fi,x),x) + 2*x*xdiff (fi,x) ) ;
cond : [] ;
file output_append : true ;
with_stdout ("se_xi.txt",print(string(float(al0]))));
for n : 0 thru M-1 do (
eqqu : ev(coeff(eq,x,(3*%n+1)/2),cond) ,
this : solve(eqqu,aln+1]),
cond : append(cond,this),
this : first(this),
aln+1] : rhs(this),
with _stdout ("se_xi.txt",print(float(aln+1])))
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We can go as far as we want with the a,’s:

Results with symbolic algebra

ao
ai
az
as
ag
as
de
az
as
ag
aio

+1,15248832742929 x 1010
—2,6666666666667 X 1071
+4,6276679827463 x 101
—6,4894881692528425 X 1074
—9,4517828664332276 X 10~*
—2,5400784492116708 X 107>
+3,5810599703874529 X 107>
+3,8844564686017651 X 107°
—1,4163383082670557 X 107°
—3,2740710683167304 X 10~/
+4,5534502970990704 X 1078

1.2

08

041 )

]
0.2
)

Serig ===

Assintotico .
Numerico
|

From Chor et al. [2013b]

2.5 3

§Lemma
UFPR




5. Solutions for ¢y = 0

19/34

With hard algebra

Next, results were derived analytically [Chor et al., 2013a]:

n

Ap+1 =

Cap(3n+5)| 3n+3 2

4(3n+1)a, 3n+5
-+ Z Afln—k+1 | >

k=1

o 210

4
ai ~15

1 2
a —6—%(2511 + 3aj)
. (99611+28)612

as 994,

(42a;+10)as+21a;
aq - 42a,

Some limitations are inherited from the
Blasius’ series solution:

e Noequation for the general term (a rec-
curence relation instead): no easy way
to calculate the radius of convergence.

e Dependence on the first term. In our

case, 1
Yo = ¢d_§ o

is a key parameter.

ﬁQLemma
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Still, the radius of convergence was not known

Series solution calculated with 8700 To obtain an accurate estimate of the ra-
terms: dius of convergence, we changed variables
- ({ = £1/?), obtained a new equation,

1.0

// d P do
// d¢ [¢dg

(0]

. _ E : 3n+1

‘ 00.0 0.5 1.0 1.5 2.0 2.5 @ - ang °
§ n=0

@ _
d§_’

+ 407

$(£)

and a standard power series

®({) is an analytic function within a circle around the origin in the complex {-plane.
The circle’s radius is the radius of convergence. Within that radius, from Cauchy’s The-
orem,

75 o(0)d¢ = 0.

ﬁQLemma
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The radius of convergence

R ~ 2.3757445

All integrals are line integrals using the Runge-Kutta-Cash-Karp method in the complex

plane. The method provides error estimates which are used to identify non-zero line

integrals. Six singularities of the complex Boussinesq function ®({) are clearly seen,

along with branch cuts emanating from them.

é) S
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Chor et al. [2013a] improvements

Having the full series now, we extended the Padé approximations

3n
1/2 Z:Jn\]:o Ané?
SN o Ba?

n=0"—n

Pn(§) =¢

Best results were obtained for N = 200, and a more modest N = 20 was tabulated. With
N = 20, the Padé approximation extends the radius of convergence to = 3.3.

The same asymptotic solution of Hogarth and Parlange [1999],

§

1+ 2%;3 exp(—£&2)

P(€) ~ 1 — A erfc

was also obtained, but with A = 0.23372761864384109.
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Best results (But probably overkill)

1.4 T ! ! ! !

T )

| ‘ ‘ Padé
0.0 I | , | ASYmptotllc ----------
0.0 1.0 2.0 3.0 4.0 5.0 6.0
&
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6. Solutions for ¢y # 0

We now look at the boundary condition 0 < ¢g < 1. As before, ¢(c0) = 1.

Differently from the case ¢g = 0, the derivative d¢/d¢ is not singular at £ = 0, and this
allows one to seek a solution in terms of a regular Taylor series [Dias et al., 2014]:

(0.9)

p(E) = ) ant",
n=0
ao = Po, ap = f—z,
- 1 2(n — 1) -
An+1 = _ao(n 1) ap—1 + Z(n —k+ Dagap_41

k=1
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A practical approach for the initial condition

As before, the value of i is of engineering interest, but cannot be obtained (so far) by
purely analytical means. Topfer’s method can no longer be applied to obtain 1 (numer-
ically) in one pass, but it can help to generate a large number of numerical solutions [see
Dias et al., 2014]. Then, we fitted an empirical curve:

0.7

’“"0«‘“" Data polints
Eq. (14)
0.6 "o,

o, Yo(go) ~ (¥& + agl)i(1 — ¢S)(1 + f¢)°,

0.5 .."*
\ ¥y ~ 0.66411467.

B ‘\
0.3

Yo

\ with a = 0.733841, b = 0.999223, ¢ =
02 \ 0.98359, d = 2.94568, e = 0.186587, f =
0.1 0.966673, and g = 0.93347.

0.0

0.0 0.2 0.4 0.6 0.8 1.0
%o
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A new asymptotic solution

When ¢ — oo, ¢ — 1. Substituting this For each ¢ there is an optimum C:
into the Boussinesq ODE:

o C
¢ + 'Y +28¢ =0 = 0.1 863074
" BB+ 26 = 0 0.2 1.01683
0.3 1.20578
(where a is for “asymptotic”). The latter is gg 1;1353)23
a Bernoulli equation in ¢! Solving, ' '
0.6 2.39555
0.7 3.22508
erf (&) +C
62(£.C) = In ( (£) ) F 1 0.8 4.87223
1+C 0.9 9.84770
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Results from Dias et al. [2014] for ¢y = 0.5

1.2 ; T

S
‘5

0.4 | 4

o2 L S S S S S |
Numerica o

| | Asymptotic

| | | Padé

0.0 | | | ] ]

0.0 0.5 1.0 1.5 2.0 2.5 3.0

m
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7. An application to hydrology

Consider again a SImpllfled watershed:

D

B B

In the dimensionless variables

X kH
X = —, T = t,
B B2

the Boussinesq PDE is

op 0 [ 8¢
E‘&l E]’

0¢

p(x.00 =1, 40.1) =0, -

- (L,t) =

0.

At an early time the aquifer “looks” infinite along
x, and the dimensionless outflow is

[0 4] 1 o _ Yo
10 = 452 | 00 = || 3 =G

For late times, a linearized equation can be derived
[Boussinesq, 1904],

op _ 09
ot _pﬁxz

whose solution reduces to

)
x(7) =peXp( pr)-

Hence,
dy _ s
dr
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Brutsaert-Nieber recession analysis

a1 and ay are analytically related to k and n. f; = 3 and f; = 1 are predicted from the
analytical solutions.

10000 ¢
1000 |

100 |

10 |
<
= 1
)

0.1 |

0.01 |

0.001 ;— """""""""""""""""" /"/' """""""" ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, _;
0.0001 L i e L
0.01 0.1 1 10
X

=
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Retrieving n and k

From Chor and Dias [2014]:

_ 1_))1/2 T ~1/2
n= (2 Hlp()A (052051) ’

k= A (“2)1/2
V2pH? L2y \o1)

All of previous research (including analyses with real watersheds) has used the value of
o associated with ¢g = 0.

However, from Dias et al. [2014], we now have the function 1y (¢o).
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8. Conclusions

You may know more about this talk in:

Tomas Luis Guimaraes Chor, Nelson Luis Dias, and Ailin Ruiz de Zarate. Solucao em série
da equacao de boussinesq para fluxo subterraneo utilizando computacao simbolica. In
Anais, XX Simposio Brasileiro de Recursos hidricos, Bento Gongalves, RS, 2013b

T. Chor, N. L. Dias, and A. R. de Zarate. An exact series and improved numerical and ap-
proximate solutions for the boussinesq equation. Water Resour. Res., 49:7380-7387, 2013a.
doi: 10.1002/wrcr.20543

N. L. Dias, T. Chor, and A. R. de Zarate. A semi-analytical solution for the boussinesq
equation with non-homogeneous constant boundary conditions. Water Resour. Res., 50
(8):6549-6556, 2014. doi: 10.1002/2014WR015437

T. L. Chor and N. L. Dias. A simple generalization of the brutsaert and nieber analysis.
Hydrology and Earth System Sciences Discussions (Online), 11:12519-12530, 2014
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Closing remarks

e To this day, the analytical (series and asymptotic) solutions of Blasius are a powerful
tool, not only for Boundary-Layer Theory, but for a completely unrelated problem,
the Boussinesq non-linear equation.
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e Unfortunately, the initial condition ¢ still needs to be calculated numerically (but we
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e Unfortunately, the initial condition ¢ still needs to be calculated numerically (but we
are working on it!).

e A host of analytical and semi-analytical techniques (complex plane integration and
Cauchy’s Theorem; Padé approximations; asymptotic analysis of differential equa-
tions) are needed to make analytical solutions useful for groundwater problems.
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e To this day, the analytical (series and asymptotic) solutions of Blasius are a powerful
tool, not only for Boundary-Layer Theory, but for a completely unrelated problem,
the Boussinesq non-linear equation.

e Unfortunately, the initial condition ¢ still needs to be calculated numerically (but we
are working on it!).

e A host of analytical and semi-analytical techniques (complex plane integration and
Cauchy’s Theorem; Padé approximations; asymptotic analysis of differential equa-
tions) are needed to make analytical solutions useful for groundwater problems.

e We must recognize that the first strides (Blasius, Polubarinova-Kochina, Heaslet and
Alksne) were the largest, but the recent improvements promise a much wider scope
of applications and unprecedented (maybe not needed in Engineering) accuracy.
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Closing remarks

e To this day, the analytical (series and asymptotic) solutions of Blasius are a powerful
tool, not only for Boundary-Layer Theory, but for a completely unrelated problem,
the Boussinesq non-linear equation.

e Unfortunately, the initial condition ¢ still needs to be calculated numerically (but we
are working on it!).

e A host of analytical and semi-analytical techniques (complex plane integration and
Cauchy’s Theorem; Padé approximations; asymptotic analysis of differential equa-
tions) are needed to make analytical solutions useful for groundwater problems.

e We must recognize that the first strides (Blasius, Polubarinova-Kochina, Heaslet and
Alksne) were the largest, but the recent improvements promise a much wider scope
of applications and unprecedented (maybe not needed in Engineering) accuracy.

e | leave you with the most accurate (31 digits) estimate of Blasius’s constant for the

shear stress in a laminar boundary-layer, from Chor et al. [2013a]:

K = 0.33205733621519629893718005933392 .
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Many thanks

...for your attention!
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...for your attention!

Questions?
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