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Thanks and acknowledgements

It is an honor to be here, to speak to you.

Thanks to the organizing commi�ee for the invitation.

This talk is largely based on Bianca Luhm’s MSc thesis and joint work
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1. Introduction

The Hurst Phenomenon is named a�er H. E. Hurst’s “Long-Term Storage Capacity of
Reservoirs” (Trans. ASCE 116, 776–808, 1951).

At the beginning of the paper,

It is thought that the general theory may have other applications
than the design of reservoirs for the storage of water.

Hurst had been interested in the design of reservoirs for the Nile River which should be
able to meet a certain target demand.
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The birth of “Stochastic Hydrology” (computer simulation of
streamflows)

In Hurst’s paper, we find a reference to the precise moment of birth of Stochastic Hy-
drology as a science of simulating river streamflow:

. . . The work was extended by the late Charles E. Sudler, M. ASCE., by similar graph-
ical methods. Much of Mr. Sudler’s work was based on artifical records in which
information taken from a short record of a stream was extended to a period of
1,000 years by writing, say, 50 annual runo� values on cards and then shu�ling
and drawing a card from these 1,000 times.
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Maximum yield from a reservoir over a period ∆

If the inflow into a reservoir is x (t ), the average over a period ∆ (say, 100 years) is

x̃∆ =
1
∆

∫ ∆

0
x (t ) dt .

(bear with me, atmospheric turbulence will eventually appear). For any length δ < ∆
starting at t = 0, the mean inflow will be

x̃δ =
1
δ

∫ δ

0
x (t ) dt .

For a reservoir to be able to supply x̃∆ continuously (the maximum that it can), its size
must be the Range

R∆ = max
δ

[δ (x̃δ − x̃∆)] −min
δ

[δ (x̃δ − x̃∆)] .
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As it is painfully known,

(see the current water shortages in Southeastern Brazil) the sample range depends on
the period analyzed [Hurst, 1951, Table 2].

Description 1871-1908 1909-1945 1871-1945

Number of years, ∆ 38 37 75
Average annual discharge, Q , milliards m3 103 83 93
Range of accumulated departures, R, milliards m3 201 83 476
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As it is painfully known,

(see the current water shortages in Southeastern Brazil) the sample range depends on
the period analyzed [Hurst, 1951, Table 2].

Description 1871-1908 1909-1945 1871-1945

Number of years, ∆ 38 37 75
Average annual discharge, Q , milliards m3 103 83 93
Range of accumulated departures, R, milliards m3 201 83 476

Hurst’s engineering question was:

Can I predict the range R, given ∆?
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2. Theory

Natural extension to incorporate ensemble averaging: always at scale ∆ and beginning
at time t , define:

The sample mean: x̃∆(t ) =
1
∆

∫ t+∆

t
x (t′) dt′,

The sample stdev: s2∆(t ) =
1
∆

∫ t+∆

t
[x (t′) − x̃∆(t )]2 dt′,

The departure: v∆(t ) = [x̃∆(t ) − 〈x〉]2,
The range: R∆(t ) = max

0≤δ≤∆
[δ (x̃δ (t ) − x̃∆(t ))] − min

0≤δ≤∆
[δ (x̃δ (t ) − x̃∆(t ))] ,

The scaled range: R/S∆(t ) =
R∆(t )

s∆(t )
.
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Hurst’s amazing discovery
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Hurst’s Law: R/S(∆) =
〈
R∆(t )

s∆(t )

〉
= c∆H

From experiments with coins and se-
quences of independent random variables,
it was expected to find H = 0.5. Instead,
Hurst found H = 0.72 > 0.50 in geophysi-
cal time series.
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We (now) know more than that:

Hurst’s phenomenon does not have to do with independence of successive x (t )′s : vari-
ables serially correlated in time can (and do) exhibit ∆1/2 behavior.

The key to the problem appears to be the shape of the autocorrelation function. Let

ϱ (∆) ∼ ∆−p ↔ S (ω) ∼ ωp−1

Then

1 < p < 2⇒ “no Hurst” (fast decay with ∆)

0 < p < 1⇒ “Hurst” (slow decay with ∆).

It is usually assumed that
p = 2 − 2H .
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Just a li�le bit more theory

In the 1930’s Taylor introduced the statiscal definition of the integral scale:

T ≡
∫ ∞
0

ϱ (τ ) dτ .

We have:

T < ∞: No Hurst, R/S(∆) ∼ ∆1/2 [Feller, 1951].

T = ∞: Hurst: R/S(∆) ∼ ∆H , H > 1/2.

T = 0: Hurst (anti-persistence), R/S(∆) ∼ ∆H , H < 1/2. We will only discuss anti-
persistent behavior very briefly in this talk.
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The RMSE of x̃∆

In large part the above is empirical: an analytical result linking ϱ (∆) to R/S(∆) seems to
be lacking. A result exists however for

RMSE(x̃∆) =
[〈
[x̃∆ − 〈x〉]2

〉]1/2
=

[
2Var{x}

∆

∫ ∆

0

(
1 − η

∆

)
ϱ (η) dη

]1/2
:

ϱ ∼ ∆−p ⇒ RMSE(x̃∆) ∼ ∆−p/2 = ∆H−1.

When T exists, this reduces to Lumley and Panofsky’s equation:

RMSE(x̃∆) ≈
[
2T
∆

Var{x}
]1/2
∼ ∆−1/2.

Also, remember:

R/S(∆) =
〈
R∆(t )

s∆(t )

〉
∼ ∆H .
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3. Example: Fractional Gaussian Noise

Fractional Brownian Motion and its “derivative”, Fractional Gaussian Noise (FGN) (which
does not exist in many classical senses

:-) ) appears to have been conceived by Kol-
mogorov, but was widely popularized by Benoît Mandelbrot. Here, we follow the la�er.
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3. Example: Fractional Gaussian Noise

Fractional Brownian Motion and its “derivative”, Fractional Gaussian Noise (FGN) (which
does not exist in many classical senses

:-) ) appears to have been conceived by Kol-
mogorov, but was widely popularized by Benoît Mandelbrot. Here, we follow the la�er.

No Turbulence yet, but it will come!

Here we generate FGN with Mandelbrot’s worst model of an approximation to FGN
(by his own account!), which is a moving average of the type

x (t ) = QHG (t ) + (H − 1/2)
M∑

k=1
kH−3/2G (t − k ), G (t ) ∼ N (0,1), IID.

One of the main reasons for the FGN model is to construct a stochastic model that does
exhibit Hurst’s phenomenon. Hurst’s coe�icient H is an explicit parameter of the model.
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A simple example: 10,000 points of FGN with H = 0.7 (p = 0.6)

Objective: having a sample of FGN, how can we identify the value of H? First 1,000:
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I am not assigning any particular meaning to the unit increment in the data.
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A simple example: 10,000 points of FGN with H = 0.7 (p = 0.6)

Objective: having a sample of FGN, how can we identify the value of H? First 1,000:
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x
(t
)

t

I am not assigning any particular meaning to the unit increment in the data.

Finally, some “turbulence”!
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A micrometeorologist would. . .

Plot the autocorrelation and the spectrum (but H is elusive!):
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p − 1 = −0.966 ≈ −1⇒ p = 0!

Here we have the theoretical ϱ (∆):

ϱ (∆) =
1
2

[
(∆ + 1)2H − 2∆2H + (∆ − 1)2H

]
∼ ∆2H−2 for large ∆.

Lemma
UFPR



3. Example: Fractional Gaussian Noise 15/28

R/S(∆) and RMSE(x̃∆)

Therefore, some of the most used statistical analyses in Micrometeorology are com-
pletely blind to Hurst’s phenomenon: we need other statistics to detect it.
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Interestingly, R/S(∆), Hurst’s original device that led to the discovery of Hurst’s phe-
nomenon, seems to be o� the mark. RMSE(x̃∆) is much be�er! (Only in this example?)
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4. The Hurst Phenomenon in Turbulence

Here we give a brief history of people who identified the Hurst phenomenon explictly in
Turbulence:

Early on, Su�on [1932] proposed that the autocorrelation function of wind components
decays with the time-lag ∆ as ∆−p, with p > 0. Su�on obtained values of p equivalent
to H = 0.875 and H = 1 in models of atmospheric di�usion. As noted by Taylor [1935],
these values implied the nonexistence of T .

Nordin et al. [1972] seem to have been the first to find the Hurst phenomenon in turbu-
lent flows; their data came from laboratory flumes and measurements in the Missouri
and Mississipi rivers.

The Hurst phenomenon was then identified in grid turbulence by Helland and van A�a
[1978]; and in atmospheric concentration data by Gi�ord [1993].
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Error estimates and the Hurst phenomenon

RMSE(x̃∆) was already known to Mandelbrot and Wallis [1968]: but they subsequently
chose to keep on analyzing data with R/S(∆) (business as usual) instead.

In the context of Hurst’s phenomenon, it seems to have lain buried until Montanari
et al. [1997]: here, they did put it to work to identify Hurst’s phenomenom in Hydrology
(again).

Recently, the power-law behavior of RMSE(x̃∆) was independently proposed by Salesky
et al. [2012] to calculate the random error of Surface-Layer turbulence statistics, as in

x̃∆ =
1
∆

∫ ∆

0
[y′(t )z′(t )] dt ⇒ ϵyz = RMSE

(
ỹ′z′���∆=T )

.

On the basis of Lumley and Panofsky’s RMSE(x̃∆) ≈
[2T

∆ Var{x}]−1/2 ∼ ∆−1/2, Salesky
et al. [2012] assumedp = −1/2 always, enforcing it even when data appeared to disagree.
The present research started the same way, but the data insisted to disagree!
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Eschew the integral time scale
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5. Surface-Layer Turbulence Data and Hurst
Two data sets: Tijucas do Sul (short grass) and Missal (Itaipu Lake).

Most analyses were made a�er linear detrending.
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Linear detrending does not a�ect significantly the estimates of H .
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Data analysis

So we did the obvious (in hindsight!): we allowed Surface-Layer Turbulence to exhhibit
Hurst’s phenomenon (but we did not, by any means, ordered it to!).

The goal is simple: just to re-do Salesky et al. [2012]’s approach, but le�ing p , 1.

All data sets analyzed display Hurst’s phenomenon very distinctively.

Hurst’s phenomenon is stronger (larger H ) for first-order data. It is still present for
second-order data.
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Missal data, 1st order
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Tijucas data, 2nd order
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Is R/S(∆) a biased estimator of H?
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The Hurst phenomenon is probably outside the scope of MOST

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1.1
1.2

-10 -8 -6 -4 -2 0 2

H

ζ

RMSE(x̃∆), Tijucas u′
v′
w′
θ ′

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1.1
1.2

-10 -8 -6 -4 -2 0 2

H

ζ

R/S(∆), Tijucas u′
v′
w′
θ ′

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1.1
1.2

-10 -8 -6 -4 -2 0 2

H

ζ

RMSE(x̃∆), Missal u′
v′
w′
θ ′

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1.1
1.2

-10 -8 -6 -4 -2 0 2

H

ζ

R/S(∆), Missal u′
v′
w′
θ ′

(Very long range, very low frequencies)
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Filtering may alter H significantly!

Look at Mohamet’s u and θv data [Chamecki, 2013]: 07:30 h of near-steady, near neutral
turbulence (15 times as long as “standard” runs).
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Filtering may alter H significantly!

Look at Mohamet’s u and θv data [Chamecki, 2013]: 07:30 h of near-steady, near neutral
turbulence (15 times as long as “standard” runs).
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⇒ Filtering is not recommended when calculating “Hurst statistics”.
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Conclusions

• Hurst’s phenomenon is ripe in surface-layer turbulence.

• Tools devised to “see” inertial-range behavior are blind to Hurst’s phenomenon.

• Taylor’s integral time scale T o�en does not exist in surface-layer turbulence.

• R/S(∆) and RMSE(x̃∆) are di�erent estimators (they don’t yield the same H ).

• This does not prevent error estimates from being possible, but errors may be some-
what larger than we thought, because of the lower decay of RMSE(x̃∆) with ∆.

• The Hurst phenomenon is (very likely) outside the scope of Monin-Obukhov Similarity
Theory. This is expected, due to the very long-range nature of Hurst’s phenomenon.

• Filtering can alter Hurst statistics dramatically. Avoid it by all means when looking
for Hurst’s phenomenon in surface-layer turbulence.
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Many thanks

. . . for your a�ention!
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